激素性股骨头坏死的生物标志与免疫浸润分析
作者:
作者单位:

郑州大学人民医院

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Biomarkers and immune infiltration analysis of steroid-induced necrosis of the femoral head
Author:
Affiliation:

1.People'2.'3.s Hospital of Zhengzhou University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]本研究旨在确定参与激素性股骨头坏死(Steroid-induced Osteonecrosis of Femoral Head,SONFH)的潜在长链非编码RNA(lncRNA)和信号通路,并研究其分子机制。[方法]从NCBI-GEO数据库(http://www.ncbi.nlm.nih.gov/geo)下载微阵列数据(GSE123568),并使用生物信息学工具对其进行了分析。 通过分析差异表达基因(Differential Expressed Genes,DEG)、京都基因和基因组百科全书(KEGG)扩增通路、基因本体论(GO),最后鉴定出蛋白质-蛋白质相互作用(PPI)网络确定了3个关键非编码基因和6个关键mrna。并进一步研究了激素性股骨头坏死mRNAs、miRNAs和lncRNAs的共表达谱,建立了SONFH特异性竞争内源性RNA(ceRNA)网络,分析了免疫浸润,探索了DEG与免疫细胞的相关性。 最后用GSE26316进行验证。[结果]本研究共获得了3个lncRNA(C20orf197 、MIR22HG、XIST)、21个miRNA和37个mRNA,以及一个可能在SONFH中起重要作用的关键轴lncRNA-miRNA-mRNA(XIST/Has-miR-217/FOXO3)。 此外,通过分析其免疫浸润,发现与正常组织相比,SONFH组织含有更多比例的CD4原始T细胞(P <0.05),最后从GSE26316数据集验证了关键基因FOXO3的表达水平。[结论]C20orf197、MIR22HG、XIST是SONFH发病过程中的潜在标志物,基因轴XIST/Has-miR-217/FOXO3在SONFH的发生发展过程中起到重要作用。

    Abstract:

    [Objective] The purpose of this study is to identify the potential long non-coding RNAs (lncRNAs) and signaling pathways involved in Steroid-induced Osteonecrosis of Femoral Head (SONFH), and to investigate their molecular mechanisms.[Methods]Microarray data (GSE123568) were downloaded from NCBI-GEO and analyzed using bioinformatics tools. By analyzing Differentially Expressed Genes (DEG), Kyoto Encyclopedia of Genes and Genomes (KEGG) amplification pathways, Gene Ontology (GO), and finally identified a protein-protein interaction (PPI) network and identified 3 key Noncoding genes and 1 key mRNA. We further studied the co-expression profiles of mRNAs, miRNAs and lncRNAs in steroid-induced necrosis of the femoral head, established a specific competitive endogenous RNA (ceRNA) network for steroid-induced femoral head necrosis, analyzed immune infiltration, and explored the relationship between DEG and immune cells. Correlation. Finally verified with GSE26316.[Results]A total of 3 lncRNAs (C20orf197 MIR22HG XIST), 21 miRNAs and 37 mRNAs, and a key axis lncRNA-miRNA-mRNA (XIST/Has-miR-217/FOXO3) that may play an important role in SONFH were obtained in this study. In addition, by analyzing its immune infiltration, it was found that SONFH tissues contained a higher proportion of CD4 naive T cells compared with normal tissues (P < 0.05), and finally the expression level of the key gene FOXO3 was verified from the GSE26316 dataset. [Conclusion]C20orf197, MIR22HG and XIST are potential markers in the pathogenesis of SONFH, and the gene axis XIST/Has-miR-217/FOXO3 plays an important role in the occurrence and development of SONFH.

    参考文献
    [1] 毕煦昆,郭成龙,赵建栋,等. 骨髓间充质干细胞来源外泌体及其相关信号通路在激素性股骨头坏死中作用的研究进展[J] . 中国生物工程杂志, 2022,19 (10):1-16.
    [2] 温家福,韦标方,激素性股骨头坏死骨髓间充质干细胞成骨分化的研究进展[J] . 解放军医学杂志,2020,45 (11):1207-1214.
    [3] Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository[J] . Nucleic Acids Res,2002, 30 (1):207-210.
    [4] Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J] . Nucleic acids research,2015, 43 (7):47-48,e47.
    [5] Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9. 1:protein-protein interaction networks,with increased coverage and integration[J] . Nucleic Acids Res, 2013, 41 (3):808-815.
    [6] Shannon P, Markiel A, Ozier O , et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks[J] . Genome research , 2003, 13 (11):2498-2504.
    [7] Ashwini Jeggari, Debora S Marks, Erik Larsson. MiRcode: a map of putative microRNA target sites in the long non-coding transcriptome[J] . Bioinformatics, 2012, 28 (15):2062-2063.
    [8] Grimson A, Farh KK, Johnston WK, Garrett-Engele P, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing[J] . Molecular cell, 2007, 27 (1):91-105.
    [9] Chou CH, Shrestha S, Yang CD, et al. MiRTarBase update 2018: a resource for experimentally validated microRNA-target interactions[J] . Nucleic acids research, 2018, 46 (1):296-302.
    [10] Wong N, Wang X. MiRDB: an online resource for microRNA target prediction and functional annotations[J] .Nucleic acids research, 2015 43 (1):146-152, .
    [11] Huang DW, Sherman BT, Tan Q, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists[J] . Nucleic Acids Res, 2007, 35 (2):169-75.
    [12] S. Saidi, D. Magne. Interleukin-33: a novel player in osteonecrosis of the femoral head? [J] . Joint Bone Spine, 2011, 78 (6): 550–554.
    [13] J. Schmitz, A. Owyang, E. Oldham, et al. IL-33, an interleukin1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines [J] . Immunity, 2005, 23 (5):479–490, 2005.
    [14] Williams E L, Stimpson M L,Lait P J P, et al. Glucocorticoid treatment in patients with newly diagnosed immune thrombocytopenia switches CD14(++) CD16(+) intermediate monocytes from a pro-inflammatory to an anti-inflammatory phenotype [J] . Br J Haematol , 2021, 192(2):375-384.
    [15] 喻钧伦, 唐曦, 黄雨,等. 激素联合脂多糖诱导股骨头缺血坏死模型兔的骨质变化[J] . 中国组织工程研究, 2017, 21(28):4518-4522.
    [16] Y.-S. Choi, H.-J. Choi, J.-K. Min, et al. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6- mediated endothelial nitric oxide production [J] . Blood, 2009, 114(14):3117–3126.
    [17] WANG F, MIN H, SHAN H, et al. IL-34 Aggravates Steroid-Induced Osteonecrosis of the Femoral Head via Promoting Osteoclast Differentiation [J] . Immune network, 2022, 22(3):e25.
    [18] WANG M, MIN H, SHAN H, et al. Bone morphogenetic protein 2 controls steroid-induced osteonecrosis of the femoral head via directly inhibiting interleukin-34 expression [J]. Journal of molecular endocrinology, 2021, 68(1): 1-9.
    [19] Makaremi S, Rose M, Ranjit S, et al. Lateral diffusion of CD14 and TLR2 in macrophage plasma membrane assessed by raster image correlation spectroscopy and single particle tracking [J] . Sci Rep, 2020, 10(1):19375.
    [20] ZHANG S, LI Z, WEINMAN S. FoxO3 might be involved in the inflammatory response of human monocytes to lipopolysaccharide through regulating expression of toll like receptor 4 [J] . Molecular biology reports, 2022, 49 (8):7611-7621
    [21] OHZONO H, HU Y, NAGIRA K, et al. Targeting FoxO transcription factors with HDAC inhibitors for the treatment of osteoarthritis [J]. Annals of the rheumatic diseases, 2022, 15 (12):66-67.
    [22] HE J, CHENG M, YE J, et al. YY1-induced lncRNA XIST inhibits cartilage differentiation of BMSCs by binding with TAF15 to stabilizing FUT1 expression [J] . Regenerative therapy, 2022, 29 (20):41-50.
    [23] HE S, WANG Z, TANG H, et al. SIRT1MiR-217 Inhibits Proliferation, Migration, and Invasion by Targeting in Osteosarcoma [J] . Cancer biotherapy & radiopharmaceuticals, 2019, 34 (4):264-70.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
文章指标
  • 点击次数:87
  • 下载次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-11-07
  • 最后修改日期:2023-01-22
  • 录用日期:2023-03-30